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Nomenclature

A area

Bi -Biot number, eqn (2-6)

c specific heat

D domain

Fo Fourier modulus, eqn (2-5)

h convection coefficient

JL Bessel function of the first kind of order t

k thermal conductivity

L length of cylinder

m mass

P point

Q heat transfer

Qtot total heat transfer

q heat transfer rate

q, - constant heat flux

R radius of cylinder

r radial coordinate

T temperature

T average temperature

t time

V volume

z axial coordinate

a thermal diffusivity
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6 Kronecker delta

cp angular coordinate

* size parameter

p density

Subscripts

c center

i initial or evaluated at node-i

j evalued at node j

s surface

S surroundings
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1.0 INTRODUCTION

In the processing or cooking of foods, nutrient materials are

heated up to the sterilization temperature and'retained at that

temperature for sufficient time to destroy harmful bacteria. When

foods are cooked immediately prior to serving, the nutrient material

simply cools from temperatures in the sterilization region down to

serving temperatures 135-150F. When foods have been processed pre-

viously and need only to be heated for serving, the nutrient material

is heated from some initial temperature (whether room temperature or

refrigerated temperature) up to serving temperatures. The cool, pro-

cessed foods have a low level content of harmful bacteria. However,

the rate of bacteria growth is accelerated in the temperature range

45-140F. Therefore, it is important in the heating process for

serving to be accomplished in a reasonable time so that nutrient

material does not remain in the region of accelerated bacteria growth

for too long a time. For example, it is possible for bacteria to

double by cell reproduction in just 20-30 minutes. Therefore, in

the heating process foods cannot linger in the critical temperature

range.

For the heating of foods in the ordinary, Earth-based facility,

the primary mode of heat transfer is the convection mechanism, which

is a very effective mechanism of heat transfer for substances having

fluid characteristics. Since water boils at 212F, the surfaces of

the container can be maintained at temperatures well above that of

the food substances without permitting boiling of the food. The

presence of large temperature differences increases the rate of heat

transfer. Convection heat transfer and the presence of large temper-

ature differences each enhance the heat transfer and reduce the time

required for the heating process in the Earth-based facility.

In the space vehicle, the heating of foods is desirable for the

comfort and for the psychological benefits of the crew. However,
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.the heat transfer is .impaired by two physical factors: (a) the

zero-g envi. nt and (b) the reduced pressure level of approxi-

.mately 5 psia. Since the convective mode of heat transfer depends

upon bouyant forces, the zero-g environment eliminates convection;

the food material must distribute energy internally by the conduc-

tion mbde, which is a less effective mechanism of heat transfer.

Also, at the reduced pressure level, water boils at 160F. Therefore,

the temperature of the walls of the container cannot be elevated

substantially above the temperature of the food material--thus,

eliminating the beneficial large temperature difference.

There are then two primary tasks to be accomplished through

the thermal modeling of nutrient systems: (a) prediction of the

time required to heat foods to desired temperatures, and .(b) devel-

opment of parametric studies to optimize the system for minimum

power consumption.

1.1 Food Heating System for SkyLab

The physical system for the heating of foods for SkyLab is a

tray arrangement with several receptical cavities for the insertion

of canned foods. The system uses two sizes of aluminum cans. The

cavities are lined internally with blanket-type, electrical resis-

tance heaters. The heaters are thermally controlled and provide a

uniform heat flux of 2 watts per square inch. The sensor for the

heater control system is a thermocouple, which is attached to the

cavity wall.

The control system turns the heater off when the temperature

sensor reaches 155F and reactivates the heater when the temperature

drops to 143F. The food heating system is designed to provide hot

foods at 149±6F. The aluminum cans of food receive heat on the

sides and on the bottom with the top insulated. There are several

different initial states of the food when inserted into the heating

6<
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.system. The contents of the cans may be initially at a uniform

temperature of -10F (frozen storage), 60F (ambient storage) or

IA30F--(rehydrated). The contents of the can are pressurized to

5 psia with nitrogen. The requirements of the food heating system

is that foods be heated above 140F within 132 minutes; this time

requirement assures that the food passes through the microorganism

growth temperature range (45-140F) rapidly enough to prevent con-

tamination.
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2.0 BASIC THERMAL MODELING OF NUTRIENT MATERIALS

-The theiu:1. analysis of the heating or cooling of nutrient

materials can be considered in two parts. First, the establish-

ment of the mechanism (or mechanisms) by which heat is transferred

to (or from) the nutrient material; and second, the determination

of how heat is transferred within the material itself.

The basic mechanism by which heat is transferred to (or from)

the material can involve any combination of the three basic heat

transfer mechanisms (conduction, 'convection, radiation). Heat

transfer to the material by conduction involves the direct contact

of two solids where contact resistance may be a consideration.

Convection describes the heat transfer mechanism between a solid

surface and a fluid. While thermal radiation is always present,

it is particularly important in the absence of a transferring media

since the other modes are non-existant. However, in order for ther-

mal radiation to be significant, relatively large temperature dif-

ferences must be present.

Two basic models are commonly involved in the analysis of the

transfer of heat within the nutrient material, itself. The nutrients

may be solid or plastic so that temperature gradients may be present

in the material. On the other hand, the nutrient material may have

sufficient fluid character so that moderate mixing occurs (whether

by.movement within the container or by natural convection currents).

In this latter case, the temperature throughout the material is

almost uniform (for moderate heating rates).

2.1 Nutrient Materials with Mixing

When a nutrient material has some fluid characteristics so that

mixing may occur, the presence of internal temperature gradients are

minimized, and the system can be characterized as having a uniform

temperature at any instant. This basic model (illustrated in Fig. 2.1)

*8<
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is known as Newtonian heating (or cooling) and is the earliest

model employed in transient heat transfer analysis. At any par-

ticuldar instant, the nutrient system has a uniform temperature.

V,

q

Fig. 2.1: Newtonian Heating Model

An energy balance on the system provides

dT dT
q = mcy- pcV- (2-1)dt dt

If the heat transfer at the boundary is by convection, the heat

transfer rate can be expressed in terms of the convective mechanism

q = hAs [T - T(t)] (2-2)

If eqns (2-1) and (2-2) are combined and integrated, the tempera-

ture response of the system becomes

A
h shs at

T -T (t) k kV
= e (2-3)

Tao - T.
1

For a cylinder of radius R and length L

A
s _ L2/R ) (2-4)-1 - + (2-4)
V R\L

If the Fourier modulus is defined as

Fo at (2-5)
R2
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.and the Biot number is defined as

hR
Bi= k (2-6)

then, the dimensionless temperature response of the system can be

written as

T - T(t) _ exp -2 BiFo 1 + ] (2-7)
T - T. L

which is shown in Fig. 2.2.

The Newtonian model also applies to solid materials whose

thermal conductivity is very large (such as silver or copper);

a more accurate statement would be that the internal resistance

to heat transfer by conduction is very small as compared to the

surface resistance to heat transfer by convection (Bi < 0.1).

The Newtonian model relations can be modified to include the thermal

radiation mechanism; however, the ensuing integration is not straight-

forward.

2.2 Nutrient Materials Without Mixing for Fixed-Temperature Boundary

Conditions

When a nutrient material is of rigid texture (i.e., sufficiently

solid to avoid mixing or convection currents), the transfer, of energy

internally is by the conduction mechanism. The basic partial differ-

ential equation for the axisymmetric cylindrical configuration (as

shown in Fig. 2.3) may be written as

+ T + (2-8)
Sr 2  r ar z a at

for the case of constant thermophysical properties. The solution

of eqn (2-8), subject to specified boundary and initial conditions,

provides the local temperature distribution T(r,z,t) at any instant.

From the temperature distribution, the response of the average tem-

perature of the material (or the center temperature) to a sudden

change in environment at the surfaces of the finite cylinder can be

established.



Fig. 2.2: Temperature Response of a Finite

Cylinder for Newtonian Heating

S2R
- -+1--

000 0.2 0.4 0.6 0.8 1.0 1.2 .4

(Fo)(Bi)



L . (2-9)

2R

Fig. 2.3: Analytical Model of a Finite Cylinder

Analytical solutions of eqn (2-8) are available [1,2]* for

basic boundary and initial conditions. For example, if the nutrient

material is initially at a uniform constant temperature T.
1

T(r,z,0) = T. (2-9)

and if the surfaces of the cylinder are suddenly changed and main-

tained at a uniform temperature T
s

T(r,L/2,t) = T(r,-L/2,t) = T(R,z,t) = Ts (2-10)

The solution of eqn (2-8) for the initial and boundary conditions

(2-9) and (2-10) is

*Numbers in brackets indicate references.
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T(r,z,t)-.. T / r 4RCO C6r)F 

T s; AAmJn Cos m - exp Pn +P 4 -Fo
-T. -T n R)TL

I s n=l m= 1

(2-11)
2 m+l 2

where A 2 and A (-1)m+l 2
n PnJl (Pn) m m

m = (2m - 1)2 and Jo (Un) = 0

The evaluation of eqn (2-11) involves the summation of a Fourier

series which converges very slowly; special techniques are generally

required to accelerate the convergence. From the evaluation of

eqn (2-11) at a particular point, the response of the temperature

of that point with time can be determined. For example, if the

surfaces of a cool cylindrical container at a uniform temperature

T. were suddenly changed to a warmer temperature T , it would be of
1 s

interest to know how fast the "cold spot" in the system responded.

Equation (2-11) would then be evaluated at the centroid of the

homogeneous cylinder (r=0, z=0). Fig..2.4 shows the response of

the dimensionless center temperature, T , with dimensionless time.
c

It is also of interest to know how the average temperature of

the system is responding which can be obtained by

V
T(t) =1 T(r,z,t)dV (2-12)

V Jo

where eqn (2-11) provides the temperature expression for substitu-

tion into eqn (2-12).

T(t) -T 4 24 2

T. T =s 4- 2 . exp[-( + p -- g-)Fo (2-13)

1 s n=l m=l n n

Fig. 2.5 shows the response of the average temperature of a cylinder

in dimensionless form.

Additional information can be gained from the solution of

eqn (2-11). The amount of heat transfer can be established by any
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of several methods. Of particular interest is the fraction of the

total possible heat transfer which has occurred up to any particular

time.. For example, if a long enough time is provided the entire sys-

tem will assume the surface temperature T and the total heat transfer

to the cylinder can easily be determined by the change in the internal

energy of the cylinder, namely

Qtot = mc(T - T.) (2-14)

The heat transfer to the cylinder from t = 0 to t = t can be

written as

Q(t) = mcCT(t) - T.] (2-15)
1

The fraction of the total heat transfer transferred to the cylinder

during the time interval t = 0 to.t = t can be expressed in terms

of the average temperature of the cylinder

Q(t) _ T(t) T(2-16)

Qtot T - T.

Since the right-hand side of eqn (2-16) is presented graphically

in Fig. 2.5, the dimensionless heat transfer- is-also represented

by Fig. 2.5. The fraction of the total heat transfer is also pre-

sented in different form in Fig. 2.6.

-Fig. 2.2 through 2.6 present the thermal characteristics of

finite cylinders for various size cylinders (i.e., for various L/R

ratios). For the cases presented, the cylinder is exposed to iden-

tical conditions on each surface. (i.e., the radial surface and the

two ends of the cylinder). However, 'the results can be used for

the finite cylinder, which is insulated on the ends; this case cor-

responds to an infinite L/R ratio where end effects are neglected.

2.3 Modeling Consideration for SkyLab Configuration

As discussed in the Introduction, the absence of bouyant forces

eliminates natural convection currents in fluid-like substances. The

NC~
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distribution of heat within the nutrient material is then dependent

on the conduction mode. The conduction mechanism can be adequately

described by energy relationships. The two-dimensional, transient

conduction equation in cylindrical coordinates was given as eqn (2-8)

for the case of constant, uniform thermophysical properties. The

solution of the partial'differential equation -for a particular appli-

cation requires the establishment of appropriate initial and boundary

conditions which simulate the physical situation.

There are unlimited combinations of possible boundary and ini-

tial conditions. However, the many possibilities generally can be

categorized into one of three broad classifications: (a) specified

surface temperature; (b) specified surface conductance; and (c)

specified surface heat flux. In the preceeding section, the surface

temperatures were specified; solutions associated with this type of

boundary condition are usually not too difficult, but, the boundary

condition does not accurately describe real-world situations. The

other two classifications of boundary conditions occur more frequently

in nature. The specified surface conductance describes the inter-

action of a fluid and a solid surface through the convection mechanism.

Although the surface conductance (or convection coefficient) is

assumed constant, the heat transfer rate is not if there is a change

in the temperature of the solid surface and/or the fluid. The third

classification of boundary conditions is the specified surface heat

flux, which accurately describe situations involving electrical

heating elements, such as in the SkyLab system. In the SkyLab con-

figuration, a uniform heat flux acts on the sides and bottom of the*

container with the top insulated. In order to simulate the SkyLab

system, the model must be capable of describing intermittent heating

periods.

Due to the presence of zero-g conditions; the boundary condi-

tions may be complicated somewhat. If the nutrient material fails



to "wet" the surface of the container, the food may "float" in a

partially filled container. The situation may occur where the

__food -separates from the heating surface. The nitrogen gas filling

the voids surrounding the nutrient material has a very low thermal

conductivity and acts as an insulator between the heating surface

and the nutrient material. In this situation, thermal radiation

may be the predominate mechanism to be considered. Since the tem-

perature of the heating surface is only 14946F, the radiation mech-

anism is not an effective mode of. heat transfer. Since heat is not

effectively transferred to the food, the heater is only heating the

wall of the can. When its temperature exceeds the cutoff, the heater

is deactivated. The heater will in fact be off most of the time, and

the heating time will be extended substantially.

In modeling food substances, the nature of the nutrient materials

themselves is an important consideration. Foods have hetrogeneous

character (i.e., a non-uniform composition such as soups, stew, etc.)

It is standard practice in modeling such systems to establish some

"weighted" average values of the therm6physical properties for the

various food components and then to treat the material as homogeneous

in nature. In the zero-g environment, the nutrient material may

form internal voids or cavities which may be filled with gas. The

presence of voids in the material may effect the internal heat

transfer substantially (as compared to the hetrogeneous character-

istics of several food substances) because of the insulating effect

of such cavities. The available data concerning the thermophysical

properties of nutrient materials are somewhat limited. The data

are scattered in many diverse sources in the literature. Also, in

gathering data from the literature, one questions the validity of

some of the data because of the experimental techniques employed in

the measurements.



3.0 ANALYTICAL APPROACH

3.1 Boundary and Initial Conditions

For the model illustrated in Fig. 2.3, the conduction relation

for the heating of nutrient materials was given in eqn (2-8) for

the case of constant thermophysical properties. To solve this rela-

tion, appropriate initial and boundary conditions must 
be selected

which best describe the physical configuration of the Skylab system.

If the nutrient material is initially at a constant, uniform tempera-

ture, the initial condition becomes

T(r,z,) = T.. (3-1)

The boundary condition for the insulated top is

aT(r,L/2,t) = 0. (3-2)
az

For the intermittent heating of the sides and bottom, the 
appropriate

boundary conditions can be written as

S- (constant heat flux;

T(Rz,t) T(r,-L/2,t) heater on)

r az (3-3)

(insulated; heater off)

Along with the physical boundary conditions is the stipulation that

the temperature'remain finite along the axis of the cylinder.

3.2 General Solution

There is no single analytical solution which will satisfy all

these conditions simultaneously. However, a piece-wise solution

can be formed by adding together a series of solutions, each valid

for a short time increment (e.g., one heating period). There are

actually only two different solutions required. One for the time

when the heater is on, and the other for when the heater is off

(which is really a special case of the first with q0 = 0)



6lcer [31 developed a general solution (additional details in

Appendix A). For a flux, qo, applied at the radial and bottom sur-

faces, insulated top, and.an arbitrary initial temperature distribu-

tion, T(r,z,0) = T. (r,z) (For the second and succeeding heating periods,

the initial temperature is non-uniform.), the transient axisymmetric

temperature response is:,

L

R 2
2 + 2at-' o

T(r,z,t) R2L i (r,z)rdrdz + F 2

0(L

+ [2 L R2 r 1"
LkL 4 12) + 2k R 2 O

COn; nz p (-COX e t)
16T Jo(pmr) cos - + exp t)p L2 L mn

m= n 2(1 + 6no) J0
2 (m R )

L
2 R

- nT nTrz
Jomr cos L Ti(rz)rdrdz

L 0
2

R o(
kX J.(pmR)
mn m (3-4)

where {.0} indicates the two cases of heater on and off

mn =  m + --' (3-5)

where PmR > 0 is the mth root of

Jo' (KmR) = 0 (3-6)

and the prime (') denotes differentiation with respect to the argument.

21<
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For the first heating period the initial temperature is

uniform and

Ti(r,z) = T. (3-7)

so that the first integral becomes equal to T., and the other
1

integration involving T. vanishes.

For a given initial temperature distribution and surface heat

flux, eqn (3-4) can be used to calculate the local temperature within

the cylinder, T(r,z,t). The highest temperature will be at the bottom

corner, point (R,O). Therefore, the temperature T(R,O,t) is monitored

until it reaches the predetermined maximum value. At this time, tz ,

the entire temperature distribution, T(r,z,tl), is evaluated; this

temperature distribution becomes T. (r,z) for the second phase of the
1

first heating cycle. With qo = 0 (heater off) eqn (3-4) is used to

determine the temperature within the food. When the monitored temper-

ature at the bottom corner (R,O) drops to the predetermined minimum

value, the heater is again activated. The temperature distribution

at this time becomes the initial condition for the first phase of the

second heating cycle. Equation (3-4) with non-zero boundary heat flux

is used to determine the temperature. This procedure is continued

until the food is heated to the desired level. The average food tem-

perature can. be determined -either by averaging the temperature distri-

bution:
L
2 R

T(t) - RL j T(r,z,t)rdrdz (3-8)

_L 0
2

or by dividing the total heat added to the food by the heat capacity

of the food. Hence

T(t) = q 0 (2nRL + TR 2 ) ton (3-9)
c

where t is the total "on-time" for the heater.
on
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-_-  esults for an Infinite Cylinder

The anTy,1 cal method outlined above has been programed and'run

for-the spztial case of an infinite cylinder (n = 0, L 4 m) heated

on the cy~i drical surfaces only [4]. An infinitely long cylinder is

equivalent to a finite cylinder insulated on both ends. A discussion

of the-program and a simplified flow chart appear in Appendix B.

Figure 3.1 depicts typical temperature distributions as a func-

tion of non-dimensional radius, r/R (with heater at 142±8F). Curve 3

represents the distribution when the wall temperature first reaches

T (i.e., the end of the first heating phase). Curves 1 and 2 are
max
the distributions at one-third and at two thirds of the total heating

time of the first phase. The remaining odd numbered curves indicate

the distributions at the end of each successive heating phase. The

even numbered curves indicate the distributions at end of the succes-

sive insulated phases (i.e., just before the heater is reactivated).

3.4 Conclusions

While satisfactory results were obtained with the analytical

model, it was decided not to be continued to the finite cylinder case

for the following reasons:

1. A discontinuity always exists when switching from.one

solution to the other due to the discontinuous manner

in which the flux is switched on and off. The effect

of this discontinuity is minor.

2. Considerable.computation time is necessary and the time

required will increase considerably by the inclusion of

the double summation required for the finite cylinder.

3. A finite difference model appeared more attractive.

Computation time was reduced and the finite difference

model is more versatile. The inclusion of different

boundary conditions and a study of heterogeneous effects

are reasonable extensions.
23<
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4.0 FINITE DIFFERENCE APPROACH

4.1 Introduction to Discrete Methods

The ultimate goal of discrete methods is the reduction of a

continuous system to an equivalent lumped-parameter system which

is suitable for solution on a digital computer. The basic approx-

imation involves the replacement of a continuous domain D by a matrix

of.discrete points (nodes) within D, as shown in Fig. 4.1.for two

dimensions.

Y Y

a. Continuous b. Discrete

Fig. 4.1. Discrete Approximation of a
Continuous Two-Dimensional Domain

Instead of developing a solution defined everywhere in D, only

approximations are obtained at isolated points (nodes), P . Inter-

mediate values, integrals, and derivatives may be obtained from this

discrete solution by interpolation. This mathematical discretization

replaces the derivatives by discrete approximations, (e.g., finite

difference approximations).

.At a given node, at a given time, the values of the coordinates

define a unique location. For an axisymmetric cylindrical coordinate

system, the set (r i , zj., t ( n)) define such a location where r. is the
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PTEdRIl coordinate, z. is the axial coordinate, and t(n) is the time
J.

after n time -steps. Hence the aependent variable (temperature in

--thiscase) at this point is

T = T(r i , z., t(n)) = Tn). (4-1)

At a given time, the nodes (ri., z.), (ri-l' z.), (ri' z jl) and

(r. z. j1) define a subregion in the shape of an annulus of

inner radius r. , outer radius r., and thickness z. - zi_l as

depicted in Fig. 4.2.

--t-

zi-I

t-

Fig. 4.2. Subregion Formed by Nodes

(ri,zj), (r i ,z ), (ri,z _l), and (r i ,zj_ 1 )

4.2 Explicit versus Implicit Models

The standard finite difference approximations for partial deriva-

tives can be found in most applied mathematics texts [5,6,7] and are

2, is-c
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.&-dlt with in more detail in the next section. In general, there

are two techniques available for approximating the differential

-_equat-ion in the transient problem. These are the implicit and

explicit methods.

In the explicit technique, the future temperature at some node

(i,j) i's expressed in terms of its present temperature and that of

surrounding nodes; that is, (for a first order approximation)

T ( n + l) = f(T)( n) , T(n) Tn) T(n) (4-2)
1,j 1, 3- I ,j+l' i+1, j i-lj' i,j

where the form of the functional relationship depends on the govern-

ing differential equation. Since the initial temperature distribu-

tion is known, this technique can be used successively at each node

to advance the solution one time step (i.e., eqn (4-2) is.applied k

times if there are k nodes). The process can be repeated indefinitely

until the required time has elapsed. The accuracy of the solution

depends largely on the spatial nodal spacing. The closer the nodes,

(hence, a larger number of nodes for a given physical system) the

more nearly accurate the approximation. The fundamental limitation

of the explicit representation is that for a given nodal spacing the

maximum rate-at which the solution can be propagated (in time) is set.

(If this rate is exceeded the solution becomes unstable). In general,

the more sparse the nodes, the smaller the maximum allowable time step

(t(n+l) - t(n) = At) becomes. This can be a severe limitation to the

explicit method-for a given application. To increase the maximum At

requires more nodes, which in turn requires additional computation

at each time step. Thus, even though fewer time steps may be needed,

each one becomes more tedious. General rules have been developed for

the maximum time step allowable under various conditions [8].

The implicit technique removes the possibility of this instability

at the expense of increased computational.complexity. In the implicit

technique, the future temperatures at a given node (i,j) and the

?'
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surrounding nodes are expressed in-terms of the present temperature

of node (i,j); that is, (for a first order approximation)

f(T(n+1) T(n+1) T(n+l) T(n+l), T(n+1))= T(n )

i,j-1' i,j+l' i-l,j' i+l, ,j ,j (4-3)

where again the functional form of f depends on the specific problem.

This relationship must be determined at each node leading to a set

of simultaneous, linear algebraic equations to be solved at each

time step. This method is unconditionally stable in time but, of

course, can introduce large round-off errors if the time step is

excessive. Again it is noted that while the implicit method seems

more attractive because of its stability characteristic, the require-

ment in the implicit model of solving a set (one equation for each

node) of simultaneous equation can hardly be compared to the solution

of a set of independent equations required in the explicit model.

4.3 Finite Difference Approximations

The following are the finite difference approximations required

T(n) T(n) Central difference
T i+l,j 1-1,j (4-4) approximation of
rir+ r i-i the first derivative

T(n) - 2T! n ) + T(n) Central difference
-T _ i+1,j 1 i-,j (4-5) approximation for the
r ij (ri+l i-l1 second derivative

2 /

T(n +tl)_ T n  The forward difference
T Ij 1,3 1, (4-6) approximation for the
t t t.

1t ti+l i first derivative

The other required approximation follows.

Due to the complexity of the implicit model, it was decided to

use an explicit model for the problem first. The explicit finite

difference approximation for eqn (2-8) around the node (i,j) is:

'p,
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T(n) - 2T(n) Tn) T(n) _ (n)
i+ 1,] i-l,j 1 i+1,j i-l,j

ri - ri 1  r. - r.

2 i

T n )  _ 2T(n)  + T n )  Tn+) _ T.(n
1,j+1 1,j 1,-1 1 1,] 1,j+ jlj-i 1 j, . (4-7)

zj+ - zj a (n+l) - t(n)

2 j

Equation (4-7) applies for any nodal spacing. However, it is

convenient at this time to assign a uniform nodal network. At each

z. there are N radial nodes. Node 1 is on the center line of the

cylinder; node N is on the circumferencial surface. The nodes are

equally spaced; i.e.,

R
Ar = N . (4-8)

There are M equally spaced 'nodes in the z direction. Hence,

L
Az M 1 (4-9)

The time steps are also of equal length and are denoted At. With

the nodal matrix thus defined eqn (4-7) becomes

T(n) - 2T(n ) + T(n )  T(n) _ (n )

i+l,j 1,1 i-l,j 1 i+l,j i-l,j
(Ar) 2  (i-l)(Ar) 2(Ar)

T( n )  _ 2T!n ) + T.n) Tn+l)_ T(-n).
,j+l 1,j 1,j-1 _ 1 1,(4-10)+ (Az) 2  a. (At)

The required temperature is T. (n+l). From eqn (4-10)
i,j

T( n + l) T(n) a(At) 1 1
, i+,j (r) 2(i-1) (Ar) 2 j

+ T( n )  - 2a(At)( 1 + 1 (A)
1,3 (4-11)

+ T(n) a(At) 1 1
i-l,j (Ar) 2  2(i-) (r) 2

+ a(At) T(n) + a(At) Tn)

(Az) i.,j+l (Az) i,j-l 29
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If= M
(Ar)" r

(At) M
(Az) - z

M
e(At) r

then 2(i-1)(Lr)- 2(i-1)

and eqn (4-11) becomes

Tn+l) T(n) 2i--1 M + T(n 1 - 2M - 2M -

1,j i+l,j 2(i-1)J r 1,j L r z

(4-12).

f 2i-3 (n)+ T(n) 2 i-3  M + T(n) M + Tn M
i-1,j L2(i-1) r i,j+1 z ,j-1 z

Equation (4-12) is the general form of the algorithm required to

generate the temperature at all interior points (i.e.., those not

directly effected by the boundary).

At the center line, i = 1 and the coefficients of T(n)
i±l,j

become infinite in eqn (4-12). However, by symmetry

T (n) T(n) (4-13)
2,j -2,.j

so that for 1 < j < M

T( n + l) T(n) [1 - 2M - 2M + T(n) 2M
lj .1, j r z 2,j r

(4-14)

+ T M + T(n) M
1, z 1,j -iMz

At the outer radius for a constant heat flux boundary condition

k -I = qo0  (4-15)
Tr r=R

The finite difference approximation to eqn (4-15) is (at i=N)

3D~3
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(n) (n)

N+1,j N-1,j q
2(Ar) k

or

T (n )  T (n )  qn k 2(Ar). (4-16)
N+, j N-1, j k

Substitution of eqn (4-16) into eqn (4-12) yields for 1 < j < M

T(n+l) = 2M T (n )  + - 2M -2MT (n)
N,j r N-r zJ 'N,j

(4-17)

+ M T(n). + T(n) 2N-1 2(Ar)qn M
z L N,j+1 N,j-lj 2(N-1) k r

At the top surface

I/2 = 0 (4-18)
az z=L/2

The finite difference approximation to eqn (4-18) is: (at j=M)

(n )  - T (n )  = 0
i,M+1 i,M-1

or

T(n) T(n) (4-19)i,M+l i,M-1

Substitution of eqn (4-19) into eqn (4-12) yields for 1 < i < N

Tn+l) 2i-l M Tn) - 2M 2M T(n)
i,M 2(i-1) r i+l,M r j Ti,M

(4-20)

2i-3 (n)
+ 2i-3 M Tn) + 2M T(n )

2(i-1) r i-1,M z i,M-1

At the bottom surface

k = qgo (4-21)
az z=-L/2
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or
T n )  ( n )

i,0 1,z _q
2(Lz) k

and T(n) T(n) + 902(Zz) (4-22)
i,0 i,2 k

The solution at the bottom surface becomes for 1 < i < N

(n+l) 2i-1 M Tn + - 2M - 2M zT ( n )

i,l 2(i-1) r i+,l L r 1,1

+ 2i-3 Tn) + 2M Tn) (4-23)
S2(i-1) r -, z I,z

+ M 2(Az)
z k

At the top edge, i = N and j = -M so that from eqn (4-17) and

(4-19)

T (n + l) = 2M T (n )  + - 2M - 2M T(n)
N,M r N-1,M r N,M

(4-24)

) 2N-.1 2(Ar)+ 2M T(n) + M qo
z N,M-1 2(N-1) r k

At the bottom edge i = N and j = 1 so that from eqn (4-17) and

(4-22)

T(n+l) = 2M T(n) + 2M - 2M I T(n)
N,l r N-1 r N,l

(n) 2N-1 2(Ar)
+ 2M T + M go (4-25)

z N,2 2(N-1) r k

2(Az) q+M z k

At the bottom center TO 1  T and from eqn (4-23)
0,1 2,1
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( n + l ) = 2M T(n) 2M 2M T ( n )

r 2,1 r z 1,

(4-26)

(n) 2(Az)
- + 2M T + M q 0

z 1,2 k z

At the top center T T and from eqn (4-20)
0,N 2,N

T(n+l) = 2M T (n ) + 1 - 2M - 2M TIN
1,N r 2,N L r zj 1,N

(4-27)

+ 2M T (n )

z 1,N-1

4.4 Application of the Finite Difference Approximations

A thirty-six node model (6 radial & 6 axial nodes) was selected

for the homogeneous cylinder. Equations (4-12), (4-14), (4-17), (4-20),

(4-23), (4-24), (4-25), (4-26) and (4-27) were used in a Fortran IV

G program. A simplified flow chart appears in Appendix C.

A simplified analysis [8] was made to determine the maximum prop-

agation speed of the solution. From eqn (4-12) it is apparent that

if the term

1 -2M - 2M
r z

is negative, then the larger T (n ) the smaller T(n + l) This result

is physically unreasonable. Therefore, time increments must be re-

stricted such that

1 - 2M - 2M > 0
r z

1 2a(At) 2ca(At)
(Ar) 2  (Az) 2

1 1 1
(Ar) 2 + (A) < 2(At) (4-28)

~33'~
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For the can sizes expected on Skylab (R < 2 inches, L < 4 inches),

with a thermal diffusivity of water (a R 5 x 10s- ft2 /hr) and for the
R Lnodal network assumed (Ar , Az ), the restriction in eqn (4-28)5' 5

becomes

25 25 1
R + L < 10 - (At)

25 25 100
1/36 1/9 (At)

or
100

At < .089 hr - 5 minutes25(36)+ 9(25)

Hence the time steps cannot exceed 5 minutes each. From experi-

mental evidence, it is known that as the can approaches its maximum

temperature, the heating phase of heater cycle may be as short as a

few seconds. If the model'is to be capable of simulating this heating

period, the time step should be on the order of a second. Since the

time steps required are well below the maximum allowable, the explicit

model will be sufficient.

The predictions of the finite-difference model can be demonstrated

by looking at the graphical presentations in Fig. 4.3, 4.4 and 4.5.

The temperature specification for the heated food is 149±6F. There-

fore, the thermal control on the uniform heat flux heater are speci-

fied accordingly. When the hottest point on the heating surfaces

reaches 155F, the heater is deactivated and the food stuffs are treated

as an adiabatic system (i.e., no heat losses); when the hottest spot

on the surface has dropped to 143F, the heater is reactivated, and the

cycle continues until the average temperature of the food reaches 149F.

In each of the cases shown, the food was assumed to have thermal dif-

fusivity of water and a uniform surface heat flux of 2.0 watts per

square inch was employed. In each of the figures, two temperatures
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are shown - the average temperature of the food and the temperature

of the coldest internal point.

The temperature responses of the small container and the large

container are shown in Fig. 4.3 and 4.4, respectively. Two initial

temperature conditions (T. = 130F and T. = 60F) are presented in
1 1

each figure. This same model was employed in evaluating the tempera-

ture responses for an initial temperature of -10F and the results

are shown for both container sizes in Fig. 4.5. It should be care-

fully noted that this particular model did not have the capacity for

including the latent energy associated with the phase change in the

thawing process. If the nutrient materials were similar to water,

the latent heat of fusion (or melting) is 79.7 calories per gram

(143 BTU/lbm). If the melting process were approximated by a "lumped"

parameter (i.e., assuming that there are no temperature gradients

present in the nutrient material during the melting process), the

additional time required would be

0.30 hours (small container)

0.39 hours (large container)

The finite-difference model can be modified to include the latent

energy of thawing to provide more accurate predictions of the re-

quired heating times.

The basic finite-difference model. has a number of input parameters.

Each of these parameters can be investigated individually to determine

its influence on the temperature response of the nutrient material.
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5.0 BASIC PARAMETRIC STUDIES

The heat transfer analysis provides the vehicle for perform-

ing parametric investigations. Parametric studies involve the

variation of each physical parameter individually to establish

the effect of that physical parameter on the thermal response of

the system. Thermal considerations in the design of food heating

systems include the effects of the following physical quantities:

(1) the thermophysical properties of the nutrient materials; (2)

the power rating of the heater (i.e., the energy per unit surface

area); (3) the control temperatures which activate the heating

element; (4) the initial temperature of the nutrient material;

and (5) the dimensions of the container. In the heat transfer

field, the temperature is generally presented as a temperature

difference ratio and time in dimensionless forms using Fourier

modulus; however, the following results employ real time and

temperature.

5.1 Effect of Thermophysical Properties

The thermophysical properties of the nutrient material have

a substantial influence on the required heating time. In the

conduction mechanism, the food must be able to conduct energy from

near the heating surface to the center of the container. Of

particular interest is the thermal diffusivity'a which is the

thermal conductivity divided by the product of the density and
k

heat capacity (or specific heat) i.e., - pc Rather than

showing the temperature response of particular nutrient materials,

the results are shown in terms of a ratio of thermal diffusivities

(more specifically, the thermal diffusivity is normalized by

dividing by the value for water at standard conditions). The

response of the average temperature of the nutrient material is

presented in Fig. 5.la for the smaller container and Fig. 5.1b
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for the larger container.

5.2 Effect of Heater Output

If a nutrient material is heated by a uniform heat source

which is not controlled, the heater would remain activated

continuously until the desired average temperature of the food

had been attained. However, if the nutrient material near-the

heating surfaces is not to experience excessive local temperatures,

a control mechanism must be included in the heater circuit. The

temperature-time relationships for the temperature controlled

heater are compared to the uncontrolled heater in Fig. 5.2a for the

small container and Fig. 5.2b for the larger container. The

average and "coldspot" temperatures are depicted.

If the heater were continuously activated, a decrease in the

heater output by one-half would increase the heating time (to a

particular temperature) by two. However, when a temperature-

controlled heater is employed, this effect is altered substan-

tially. The effect of a variation in the surface heat flux is

demonstrated in Fig. 5.3 for the small container when the initial

temperature is 70F. The interesting point is that when the uniform

surface heat flux is reduced by a factor of 8 from two (2)'watts

per square inch down to one-fourth ( ) watts per square inch, the

heating time did not increase by a factor anywhere near 8. For

example, the nutrient material was heated from 70F to 130F in 0.62

hr for the high surface heat flux case and in 1.07 hr for the low

surface heat flux case. In this situation when the surface heat

flux was decreased by a factor of 8, the heating time was not even

doubled. In optimizing a heating system for nutrient materials,

the output of the surface heater is an important consideration.

The reason the lower surface heat flux does not require a propor-

tionally longer period of time is that the heater remains activated

a substantially longer period of time prior to the initiation of a
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periodic heater action. For the case of the higher surface heat

flux, the heater begins its cycling pattern early.

5.3 Effect of Temperature Controls

The level of the temperature controls on the uniform surface

heater has a great influence on the required heating times for the

nutrient materials since the longer the heater cycling process can

be delayed, the shorter the required heating time. Although the

Skylab system has established the temperature control range of the

heater, an investigation of the control levels can provide insight

into the operational characteristics of the system.

In studying the effect of the thermal control of the surface

heater, two temperatures are considered - the surface temperature

at which the heater is cut off and the surface temperature at which

the heater is reactivated. In the model of the cylindrical con-

tainer for the Skylab system, the point affected greatest by the

surface heaters is the lower corner; the lower corner is the

intersection of the bottom heated surface with the curved-side

heated surface which corresponds to the location r = R, z = 0 in

the model (Fig. 4.2). It is this point in the model which is

used for the thermal control of the heater. Three situations are

considered for each size container:

(a) Variation of the heater cut-off temperature (150F, 155F

and 160F for a given heater cut-on temperature (140F) as shown in

Fig. 5.4.

(b) Variation of the heater cut-on temperature (135F, 140F,

145F and 150F) for a given heater cut-off temperature (160F) as

shown in Fig. 5.5.

(c) Variation in the level of temperature control for a

specified temperature difference Toff - Ton (10F) as shown in

Fig. 5.6.

In comparing the 6 figures, the most significant effect on
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the heating times occurs when a constant temperature 
difference

T - T is maintained, permitting the range of the thermal
off on
control to change.

5.4 Effect of Initial Temperature

The initial temperature of the nutrient material is the most

influential factor on heating-time requirements. Three initial

temperatures of food substances-are involved, namely 130F, 60F,

and -10F. The thermal response of each container is shown in

Fig. 5.7a and 5.7b for the 60F and 130F initial 
conditions. The

thermal response of each container for an initial remperature 
of

-10F is shown in Fig. 5.7c. It should be noted that the predic-

tions shown in Fig. 5.7c do not include the energy of melting

associated with the ordinary "thawing" process. The inclusion of

the phase change increases the heating-time requirement.

5.5 Effect of Container Size

Since the size of the containers has already been established

only the two container sizes to be used in the.heating tray are

included. Typical response characteristics are shown in Fig. 5.7c.

Parametric studies could be performed to establish the effect of

length-to-diameter ratios for the cylinder. It is desirable during

the heating process to have the maximum heat transfer surface area

per given volume of food. For a cylindrical container heated on

the sides and bottom this size parameter, the ratio of heated

surface area to volume, is

TIi + 2rRL 1 2
__ _ __ __ + - (5-1)

rrR= L L R

For the containers used in this study, the smaller container has

a 30% larger size parameter, indicating that the heating is approxi-

mately 30% faster. This rough estimate is verified in Fig. 5.7c.
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5.6 Discussion

The parameters involved in the parametric investigations

were (1) thermal diffusi.vity of the nutrient material, (2) power

rating of the heater, (3) control temperatures, (4) initial systems

temperature, and (5) .container dimensions.

A ±40% change in thermal diffusivity caused a +4 to -10F

change in the average temperature after 1 hour for the smaller

container. Also a -0.4 to + 0.8 hr delay in achieving the minimum

required average temperature of 140F resulted. 'The most interesting

result (Fig. 5.3) shows that'a reduction in heat flux by a factor

of 8 increases heating time only marginally.

The effect of independently varying the lower or upper heater

control temperature (Fig. 5.4 and 5.5) have only a small effect on

heating time. However, as expected, adjusting the level of the

control while keeping the difference between the upper and lower

temperatures constant has considerable effect (Fig. 5.6).

The effect of initial temperature is qualitatively predic-

able. The lower the initial temperature, the longer the time

required to heat the nutrient material. The significantly longer

time required to heat "frozen" foods could represent a problem.

The above results can be summarized to show the effect of

initial temperature, normalized thermal diffusivity, and the size

parameter, respectively. Figure 5.8 indicates the time'required

for the average temperature to reach 140F when the various parame.ters

are varied independently from the standard configuration.
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Fig. 5.8: Time for the Average Food Temperature to Reach 140F
When the Normalized Thermal .Diffusivity a/aQ, Initial

Tempeature Ti , and Size Parameter are varied from
the Standard Configuration (qo=2 W/in 2 , Ton/Toff = 1 4 3 / 1 5 5 F )
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APPENDIX A

ADAPTATION OF OLCER'S SOLUTION TO REQUIRED SOLUTION

61cer L3] solves the problem of the unsteady temperature dis-

tribution in a right circular solid cylinder of finite length with

its entire surface subjected to boundary conditions of the second

kind (heat flux). The three-dimensional transient solution has

the form (quantities are defined in nomenclature and following):

L
2 2 R

T(r,Cp,z,t) 1 f T.(r,cp',z)rdrdpdzT(rPzRL J

LO 0
2

3

+ (t) + To (rp, z,t)

j=0

00 0 C Jm (p . r )cos L---n) exp(-a t)
2 (2 L Ynn

rRL' /n_ (1+ 6%)(1+ 60)F1 - J 0 R
=0O m=0 n=0 n0 L R J

L
2TT ]7 ( . (nTT n.TZ)F Q"(r'D 0) '•,

Sr Cos + (rp',z)- ti-T ' drdz

0' L 0

SX2kk J' j r)r (r,P' ,0)+ (-1) F. (r,C',0) 1drTmn 0

L
RJ (p R) 2

- k X2  cos( --  (',z,0)dz (A-l)
tmn L

2
t

-kk exp (a nt)[functions of q",F,F 2 ,Fa]dt cost(-')a
mn 0



where

F,,F2 ,F, are the fluxes at the bottom, top, and radial surfaces,

respectively.

q" is the internal heat source function.

The dot notation (') indicates the derivative with respect to

time.

The eigenvalues, Xmn' are given by
inn

tmn Em L

where tmR  0 is the nth root of

J' (U R) = 0

and the prime (') denotes differentiation with respect to the argument.

Also, L
t - 2T

Sk M q "(rp, z,t)rdrdcpdzdt

-0 L 0 0
2

t 2Tr R

Oxt)= r k F (r,cp,t)rdrdcpdt

0 0 0

t 2n
02.(t) = R2L k F2 (rp,,t)rdrdpdt

0 0 0

L
t 2 2rr

3s (t) =- k F3 (p, z,t)dcdzdt
0 L 0

2

and

Too (r,p,z,t) = fn(Q) = 0



2F 2 L

To1 (r,Pz,t) = fn(F 1 ) = To (z,t) = Lk . 4 12i

2+z2F

To(r,P,z,t) = fn(F,) = To0 (z,t) = 2F2 4

Tos3 (r,P,z,t) = fn (F3)= Tos(r,t) RF3 r 2 i2k 'R 2

where axial symmetry implies

FI. fn(r)

F2 f fn(r)

Fs . fn(z)

In particular, for the heating of food

F 2 = 0

Fqo heater on
FI = F3 = OJheater off

T. (r,p,z) = T. (r,z)
1 1

and for axial symmetry t = 0. Therefore

o = 0

at

- kL F

0 = 0

2 at
Q3 - F 3kR

Equation (A.1) now becomes
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L
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2

It is noted that

L L
Cos(In n z n nlz nT- nrz

f cosi + -- )dz = c s cos - sin sin dz
2 L 2 L 2 L

L L
2 2

2L nTrr n
n --cos sin
n 23 2

=0 (A-3)



.--- Since [9]

_x J (X) = xj (X).
dXL v v-1

so that for v = 1

d IxJ (x) J XJo (X)

then

R pR

f rJo(pr)dr = J XJo(x)dx

o o

nmR
_1 S dxxJd (X) dx

- J (SmR) . (A-4)

When Equations (A-2), (A-3), and (A-4) are combined:

L
2 R

T(r,z,t) - 2 T(r,z)rdrdz

L 0
2

SkL + kR Oj

I - 2 ) R r 2  qo

SL\ 4 12R 2k R 2 0

+nT nT z) X

16TT C Jo(mr)cos -+ L ,exp(-ct t)m2 L mn

I L 2(1 + 6no) Jo (pmR )

m=0 n=O
L
2R
-iR i n z ,
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L 0
2
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where

mn m L+

-where PiR 0 is the mth root of

Jo'(PmR) = 0

For the first heating period the initial I"ilIH!rature is uniform

and

T. (r,z) =.T.
1 1

so that the first integral is equal to T. and ,ther integral

involving T. vanishes (by A-3).

G/c



APPENDIX B

COMPUTER PROGRAM DESCRIPTION FOR ANALYTICAL SOLUTION
DISCUSSED IN SECTION 3.0

(For Infinite Cylinder)

The computer program has essentially four segments:

a) Input and Initialization
b) The Heating Phase
c) The Insulated Phase
d) Output

These four segments can be characterized as follows:

a) Input and Initialization

The size (R) of the cylinder, the thermo-physical properties
of the food (a,c,k), the heater flux (qo), the initial tempera-
ture (Ti), the temperature ranges desired (Tmin, Tmax) and the
time increment (At) are required data.

b) The Heating Phase

The time is set to zero, then incremented until the wall
(the hottest point) temperature reaches the maximum allowable
temperature. Temperature distributions at selected times are
stored as the cylinder heats. The final temperature distribu-
tion becomes the initial temperature distribution of the insu-
lated phase.

c) The Insulated Phase

The time is set to zero, then incremented until the wall
temperature drops to the minimum temperature. Temperature
distributions at selected times are stored as the wall tempera-
ture drops. The cold point temperature is checked to see if
the food has been heated to the minimum temperature. The final
temperature distribution becomes the initial temperature distri-
bution of the next heating phase.

d) Output

Desired temperature profiles, mean temperatures, cold spot
temperatures, and hot spot temperatures are printed.

Figure B.l is a simplified flow diagram of.the computer program.

The letters to the right correspond to the phase described above.

~3<.



Input:

R, a, c, k, qo, T., T = 150 0 F, T = 135 0 F, At (a)
1 max min

ti = 0

Jt= 2

Heater on, qo = q0

Twall = T(R,0,t), eq. 3-4

t = t + At No Twall maxT Yes (b)

Ti(r,z) = T(r,z,t), eq. 3-4

Fi r ol

STwall = T(R,0,t), eq. 3-4

t =t j + At No- Twall Tmi Yes (c)

Tco = T(0,0,t), eq. 3-4

3 3 - 1

N T cold spot min>--Yes-

T.(r,z) = T(r,z,t), eq. 3-4

j +

t =ti
total d)JoutputJ j

Figure B.1
Simplified Flow Chart. .



APPENDIX C

COMPUTER PROGRAM DESCRIPTION FOR NUMERICAL SOLUTION
DISCUSSED IN SECTION 3.0

(Without Thawing)

The program follows closely the path outlined in Appendix

B. Figure C.1 is a simplified flow diagram of the computer

program.


